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Abstract 

A very detailed theory of the global process of glacial isostatic adjustment (GIA) is 
now available that is being employed to address a number of significant problems in 
both solid Earth geophysics and climate dynamics. A recent focus of the work in this 
area has been upon the impact of changes in the Earth’s rotational state upon 
postglacial sea level history and the modern field of geoid height time dependence 
that is being measured by the GRACE dual satellite system that is now in space. 
Satellite laser ranging continues to play a critical role in the understanding of these 
processes. This paper summarizes recent progress in modelling the impact of the GIA 
process upon Earth’s rotational state. 

Introduction  
The origins of highly significant anomalies in the Earth’s rotational state, respectively 
the so-called non-tidal acceleration of the rate of axial rotation and the secular drift 
(true polar wander) of the pole of rotation relative to the surface geography, have 
been associated for some time with the influence of the glacial isostatic adjustment 
(GIA) process. The non-tidal acceleration is equivalent to a value for the time 
dependence of the degree 2 zonal coefficient in the spherical harmonic expansion of 

Earth’s gravitational field, commonly represented as  of (-2.67 ± 0.15) x 102

•

J -11 
year-1 (e.g. Cheng et al. 1989). The value for the rate of polar wander reported by 
Vincente and Yumi (1969, 1970) using the data of the International Latitude Service 
(ILS) was (0.95 ± 0.15) degree/million years, a value that is close to the most recent 
estimation by Argus and Gross (2004) of 1.06 degree/million years. The latter authors 
have suggested that the observed direction and speed of polar wander should be 
corrected for the influence of plate tectonic motions and that this could be a 
significant effect, depending upon the assumptions on the basis of which the 
correction is made (see Table 1 of Argus and Gross, 2004).   

The development of theoretical explanations for the above discussed anomalies in 
Earth rotation has been dominated by work over the past two decades that has 
suggested a close connection of them both to GIA.  The earliest discussion of the 
impact upon polar wander that should be expected due to time dependent surface 
loading of a visco-elastic model of the Earth was that of Munk and MacDonald 
(1960) who employed a simple homogeneous model to suggest that wander of the 
pole could only occur in response to simultaneous variability in the surface mass 
load.  This point was obscured in the later papers by Nakiboglu and Lambeck (1980, 
1981) and Sabadini and Peltier (1981) whose analysis was based upon the application 
of a homogeneous viscoelastic model similar to that employed by Munk and 
MacDonald (1960). These authors, however, suggested that polar wander would 
continue on a homogeneous visco-elastic model of the Earth even after all temporal 
variations of the surface mass load had ceased.  This significant error of interpretation 
was corrected in Peltier (1982) and Wu and Peltier (1984) who showed that, in the 
case of cyclic loading and unloading, as is appropriate for the computation of the GIA 



effect following the series of glacial loading and unloading events that have 
characterized the Late Quaternary period of Earth history (e.g. Broecker and van 
Donk, 1970), there would be no polar wander effected once the cycle ended.  The 
homogeneous visco-elastic model of the planet would therefore exhibit no memory of 
the past history of loading and unloading as correctly pointed out by Munk and 
McDonald.  This was traced to the fact that, specifically for the homogeneous visco-
elastic model, there exists an exact annihilation of the polar wander forced by the 
internal redistribution of mass due to the free relaxation of Earth’s shape and that 
forced by the deformation due to the changing rotation itself (see e.g. Figure 2 of Wu 
and Peltier 1984). 

Based upon the prior analysis of Peltier (1974, 1976), however, it was known that 
realistic viscoelastic models of the planetary interior were significantly more complex 
then could be accommodated by the homogeneous visco-elastic model of Munk and 
MacDonald (1960).  Whereas the relaxation under surface forcing of a homogeneous 
visco-elastic model of the Earth is described by a single relaxation time that is unique 
for each spherical harmonic degree in the deformation spectrum, realistically layered 
spherical visco-elastic models have a much more complex relaxation spectrum, a 
unique spectrum consisting of an (often essentially) finite number of modes for each 
spherical harmonic degree. In Peltier (1982) and Wu and Peltier (1984) it was 
demonstrated that this realistic level of complexity endowed the Earth model with a 
memory of its history of surface loading and unloading such that the pole of rotation 
would continue to wander even after the surface load had ceased to vary.  Deep sea 
core oxygen isotopic data based upon δ180 measurements on benthic foraminifera 
were employed as basis for the construction of a model of cyclic ice-sheet loading 
and unloading of the continents following the interpretation of such data as proxy for 
the variation of continental ice volume through time (Shackleton 1967, Shackleton 
and Opdyke 1973).  Analysis based upon the application of rather crude models of 
the growth and decay of the Laurentide, Fennoscandian and Antarctic ice sheets then 
demonstrated that both the speed and direction of true polar wander as well as the 
non-tidal acceleration of rotation could be fit by the model and that the radial visco-
elastic structure required to fit both of these observations was essentially the same.  
This was construed to strongly suggest that both anomalies might to be entirely 
explained as a consequence of the ongoing global process of glacial isostatic 
adjustment. 

A recent objection to this interpretation was raised in the paper by Mitrovica, Wahr et 
al. (2005; hereafter MW) who have suggested that the theoretical formulation 
employed in Peltier (1982) and Wu and Peltier (1984) was mathematically “unstable” 
insofar as the computation of the polar wander component of the response to the GIA 
process is concerned. This objection appears to be based upon an error of 
mathematical comprehension as explicit analyses to be presented in what follows will 
demonstrate. 

Computation of the rotational response of the Earth to the GIA process
The time dependent impact on the Earth’s rotational state of the glacial isostatic 
adjustment process is determined as a solution of the classical Euler equation 
describing the conservation of angular momentum of a system subjected to no 
external torques, as: 
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in which the Jij are the elements of the moment of inertia tensor, the ωi are as 
previously and  is the Levi-Civita (alternating) tensor. Restricting attention to 
small departures from the modern state of steady rotation with angular velocity Ω

kji∈

o, 
we may construct a solution to (1), accurate to first order in perturbation theory, by 
expanding: 

oiii3ioi /m;)m( Ωω=+δΩ=ω              (2a) 

1111 IAJ +=                            (2b) 

2222 IBJ +=                            (2c) 

3333 ICJ +=                            (2d) 
ji,IJ jiji ≠=                            (2e) 

Substitution of these expansions into equation (1), keeping only terms of first order, 
leads to the standard set of governing equations for polar wander and the length of 
day, respectively (see Munk and McDonald, 1960), as: 
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in which the “excitation functions” are defined as: 
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Now it is critical to recognize that there exist perturbations Iij to the inertia tensor due 
to two distinct causes, namely due to the direct influence of change in the mass 
distribution of the planet that accompanies the change in planetary shape due to 
surface loading and unloading and that due to the additional deformation induced by 
the changing rotation triggered by the surface mass loading and unloading process.  
The contribution due to the former process may be represented as (e.g. Peltier, 1982): 
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in which  is the surface mass load Love number of degree 2 and the are the 
perturbations of inertia that would obtain due to the variation in surface mass load if 
the Earth were rigid. The symbol * in equation (5) represents the convolution 
operation. The contribution to the perturbations of inertia due to the changing rotation 
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follows from an application of a linearized version of MacCullagh’s formula (e.g. see 
Munk and MacDonald, 1960) as: 
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the value of which is determined entirely by the observed flattening of the Earth’s 
figure. Assuming the validity of the data in Yoder (1995) as listed on the web site: 
(www.agu.org/references/geophys/4_Yoder.pdf), one obtains the value  
a value that deviates somewhat from the value of 0.9382 employed in MW.  

,4149.0≅fk

The General Solution for the Rotational Response in the Laplace Transform 
Domain 

Since the solution of equation (3c) for the change in the axial rate of rotation is 
uncomplicated, it will suffice to focus first in what follows on the solution of (3a) and 
(3b) for the polar wander component of the response to surface loading. Substitution 
of (6a) and (6b) into (3a,b), the Laplace-transformed forms of the equations that 
follow are simply: 
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is the Chandler Wobble frequency of the rigid Earth, “s” is the Laplace transform 
variable, and again A=B has been assumed.  The Laplace-transformed forms of the 
excitation functions in (4a) and (4b) are simply: 
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Now equations (7a) and (7b) are elementary algebraic equations for m1(s) and m2(s) 
and these may be solved exactly to write: 

http://www.agu.org/references/geophys/4_Yoder.pdf
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If we now neglect terms of order s2/σ2 in (9a,b), which delivers a highly accurate 
approximation free of the influence of the Chandler wobble, we obtain: 
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A convenient short-hand form for the solution vector (m1, m2) = m is to write: 

( ))s(I,)s(I)s(H

k
)s(k

1

)s()s(m digiR
32

digiR
31

f

T
2

L
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

Ψ
=          (11a) 

where           ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
σ

Ω
=Ψ )s(I,)s(I)s(k1(

A
)s( digiR

32
digiR

31
L
2

oL         (11b) 

An Exact Inversion of the Laplace Transform Domain Solution
From equations (11) it will be clear that the polar wander solution m(s) will depend 
critically upon the ratio .  This fact was more fully exposed in the analysis 
of Peltier (1982) and Wu and Peltier (1984) who re-wrote the Laplace transform 
domain forms of and  as (e.g. see equation 61 of Wu and Peltier 1984): 
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in which the superscript ℓ=2 on  has been suppressed for convenience.  
Substituting (12a) into (11a) this may be re-written as: 
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In their discussion of the formal inversion of (13) into the time domain, Peltier (1982) 
and Wu and Peltier (1984) made the approximation  that the term in square brackets 
in the denominator of 13 could be safely neglected. In MW it is claimed that this 
renders the numerical structure employed to compute the time domain response 
unstable. This appears to be connected to a misunderstanding of the Tauberian 
Theorem (eg Widmer, 1983) which asserts that the infinite time limit of m(t) will be 
equal to the s->0 limit of the product sm(s). Clearly the approximation in which the 
square bracketed term in the denominator of (13) is neglected, in which case one is 
assuming that  , the multiplication by “s” on the lhs of (13) cancels the 
“s” in the denominator of (13), thus rendering the infinite time limit of the 
approximate form of (13) entirely stable. In this brief paper my purpose is to 
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Figure 1. Compares the value of the degree 2 “tidal Love number” in the limit of zero 
frequency (s=0) with the two estimates of the “fluid Love number” discussed in the text



demonstrate this fact by computing exact solutions for the inverse of (13) without 
making the approximation involved in the neglect of the term in square brackets in 
the denominator of (13). It is nevertheless useful to start this process by showing 
explicitly that this term is small. This is demonstrated in Figure 1 where I show 

 as a function of lithospheric thickness “L”. It will be clear by inspection of 
this Figure, on which the two previously cited values for are also shown, that in 
the limit of zero lithospheric thickness the approximation made in the analyses of 
Peltier (1982) and Wu and Peltier (1984) becomes increasingly more valid. That the 
Earth might be expected to respond to the GIA process such that the flattening of its 
figure was accurately predictable by the infinite time limit of the first order linear 
visco-elastic field theory of Peltier (1974) is entirely expected. The fact that it is not 
“exactly” predictable by this field theory (see Figure 1) is also entirely expected 
because processes other than the basic rotation of the object, such as mantle 
convection, may also contribute to this flattening. To demonstrate the impact of the 
approximation previously made in constructing the solutions for the polar wander 
speed and direction caused by the GIA process we must invert the Laplace transform 
domain solution (13) exactly. This was not done in MW and this appears to have 
clouded their judgement as to what the impact might be.   
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When the assumption  is abandoned , the Laplace transform domain 
impulse response may then be written n the form: 
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As will become clear, even though ε  is a small quantity (especially in the case that 
the finite thickness of the lithosphere may be neglected in the limit t → ∞), retaining 
it in expression (14a) for the impulse response could have a significant impact upon 
the solution as the rotational stability of the system would be modified.  Now the 
construction of the solution for the time-domain form of the impulse response H(t) 
proceeds in this case as in the case based upon the Equivalent Earth Model 
assumption, although the result differs somewhat from a physical perspective.  In this 
case it is useful to make the distinction between the Chandler wobble frequency of a 
rigid Earth σ and the Chandler wobble frequency of the visco-elastic Earth σo, by 
employing the definition:  
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We must then re-write the expression for H(s) as: 
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The inversion of H(s) into the time domain now proceeds by expanding the sum in 
the denominator of (16a) in the form: 
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Now substituting for the function 1 +  from (12b) we obtain: )s(k L
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Where now the iκ are the N roots of the polynomial in the denominator of the 2 
terms in (19a).  This expression for the impulse response may be further reduced by 
re-writing the ratios of products as follows: 
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Denoting  say, then we may further reduce the 

expression for the impulse response to: 
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The inverse Laplace transform of this expression is such that the solution in the 
present case, in which ,  is just: f

T ksk ≠= )0(2
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The polar wander velocity vector components are obtained simply by time 
differentiation of equations (24a) and (24b).  It is useful to compare the result in (24) 
to the solutions that obtain under the approximation previously employed.  In the 
limit o→ε we have κN = 0 and κi = λi the N-1 relaxation times that govern the 
system in this limit. In this case, the parameter E'N in the above becomes: 
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And the previous approximate result is fully recovered. 

In order to compare the temporal histories of the rotational anomalies in the two 
cases, it will be important to proceed by keeping as many features of the Earth model 
fixed as possible.  To this end and for the remainder of this paper, I will focus entirely 
upon the nature of the solutions that obtain when the recently published ICE-5G 
model of the glaciation and deglaciation process of Peltier (2004) is employed to 
determine the rotational excitation functions required for the evaluation of the 
solution (24). In the next section results will be discussed for a sequence of simple 
two layered viscosity structures as a function of the parameter ε in order to explicitly 
demonstrate the highly stable nature of the solution in the limit that this parameter 
vanishes. 

Results 
Of particular importance for the purpose of this paper is the sensitivity of the 
predictions of polar wander speed to the assumption that  may be assumed 
to be equal to k

)(2 osk T =

f. When this assumption is not made, then the solution is given by 
equation (24). In the latter, there appears the quantity (1- 'εε + ), the values in which 
for the Earth model (VM2) in question are respectively 0.034, 0.05, and 1.017 (for 

,ε 'ε     and '1 εε +− ) when the thickness of the lithosphere is taken to be 90 km. In 
Figure 2 (bottom) are plotted the predictions of polar wander speed based upon 
equations (24) as a function of the viscosity of the lower mantle with the upper 
mantle viscosity held fixed to the value in the VM2 model of Peltier (1996). Results 
are also shown for several different values of a parameter Δ =ε / 0.034 including the 
valueε  = 0.034 (Δ = 1) which is appropriate for the VM2 model with a lithospheric 
thickness of 90 km, in which case = 0.9263, but also for significantly 
smaller values of 

)0(2 =sk T

ε  including the value ε  = 0 (Δ = 0) so as to investigate the 
“smoothness” of the transition from the value ε = 0 which obtains when  (s = 0) is 
assumed to be equal to k

Tk 2

f. The two intermediate values of Δ  for which results are 
shown on Figure 2 correspond to the two values of  shown on Figure 1 when the 
lithospheric thickness L is assumed to be equal to zero. Also shown on Figure 2 (top) 
is the dependence of the predicted value of the non-tidal acceleration as a function of 
lower mantle viscosity. 

fk



Inspection of Figure 2 clearly demonstrates the fact that the solutions for polar 
wander speed that obtain in the limit 0=Δ  are almost identical to those that obtain 
for either of the two non-zero values that correspond to zero lithospheric thickness. 
This demonstrates that the formulation of Peltier (1982) and Wu and Peltier (1984) 
based upon the approximation was not mathematically unstable as 
claimed in WM. In fact, careful inspection of Figure 2 will show that the preferred 
solution for BOTH the non-tidal acceleration and polar wander speed is the model 

f
T ksk == )0(2

Figure 2. This Figure compares model predictions of the non-tidal acceleration of 
rotation (top) and of the speed of polar wander (bottom) as a function of the viscosity of 
the lower mantle when the upper mantle viscosity is held fixed to the value in the VM2 
viscosity model of Peltier (1996). The polar wander speed predictions are shown for 
several values of the parameter Δ  which measures the importance of the difference 

between the fluid Love number and fk )0(2 =sk . The two values of that are less 

than unity, 0.22789 and 0.41146, correspond respectively to the values of 0.9382 
and 0.9414 and are those that obtain in the limit of vanishing lithospheric thickness. The 

value 

T Δ

fk

1=Δ  is the value appropriate for a finite lithospheric thickness of 90 km. 



with AND L=0.0. This solution amounts to a very modest adjustment of 
the earlier result obtained with 

41146.0=Δ
0.0=Δ and L=0.0. The results for finite non-zero 

lithospheric thickness cannot fit the observed polar wander speed except, marginally, 
for a model with an upper mantle-lower mantle viscosity contrast that is incompatible 
with the observed non-tidal acceleration. Such high contrast viscosity models are also 
firmly rejected by relative sea level data from the previously ice covered area of 
North America. 

 

Figure 3. Demonstrates the ability of the GIA model of Peltier(2004) to accurately explain 
the observed time dependence of the gravity field over the North American continent. This 

field is represented by the time rate of change of the thickness of an equivalent layer of water 
at the earth’s surface. This analysis is based upon the level 2 release of the GRACE Stokes 

coefficients. In this comparison, the degree 2 terms have been excluded, a consequence of the 
fact that GRACE does not provide accurate measures of these coefficients. 

The quality of this low contrast model is also strongly re-enforced by the recently 
obtained time dependent gravity field data from the GRACE satellite system. Figure 
3 compares the GRACE observed and hydrology corrected GRACE time dependent 
gravity field observations with the ICE-5G(VM2) GIA model prediction of the same 
field. In the third frame of Figure 3 the difference between these two data sets is also 
shown, thus demonstrating the extremely high quality of the ICE-5G(VM2) model. 
The neglect of the degree 2 coefficients, which are very large for the ICE-5G(VM2) 
model, as demonstrated in Peltier (2004), is required by virtue of the inability of 
GRACE to accurately observe these coefficients..  

Conclusion
The analyses described in the previous sections of this paper have considerably 
extended the previously published theory that is employed to compute the response of 



the earth’s rotational state to the global process of glacial isostatic adjustment. These 
analyses suffice to refute the claim in MW that the formalism described in Peltier 
(1982) and Wu and Peltier (1984) was fundamentally unstable mathematically. This 
error of interpretation appears to have been due to a lack of understanding of the 
Tauberian Theorem that may be employed to predict the infinite time limit of a 
solution from the Laplace transform of this solution. The extended version of the 
theory described herein has allowed a direct investigation of the question of the 
extent to which the finite thickness of a globally continuous and unbroken lithosphere 
may contribute to the rotational response to surface mass load forcing. These analyses 
demonstrate that, in this long timescale limit, the most accurate representation of the 
rotational response of the Earth is that based upon the assumption of vanishing 
lithospheric thickness. This is understandable on the basis of the fact that the 
lithosphere of the planet is “broken” into a series of weakly coupled plates. For 
planets whose lithospheres are not unbroken in this way, the same assumption would 
clearly not be appropriate. 
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